Education Bureau
 Territory-wide System Assessment 2009
 Secondary 3 Mathematics
 Marking Scheme

Note (for Section B and C of each sub-paper):
*Mark for Answer:
(1) Mark for Answer may be given when there is a correct answer without any work shown.
(2) If the work shown is incorrect, Mark for Answer is not given.
(3) If the work shown is poorly presented but there is a correct answer, Mark for Answer may be given.
**Mark for Presentation:
(1) If the work shown is correct but the answer is incorrect, Mark for Presentation may be given.
(2) If the work shown is incorrect, Mark for Presentation is not given.
(3) Mark for Presentation may include overall work such as mathematical expressions, units, written explanations, usage of symbol, etc.
r.t. $x x x$ means "accept answers which can be rounded to $x x x$ " .

Steps that may be skipped are shown in shade.

Alternative suggested answers are shown in boxes.

Section A - Sub-paper 1 (9ME1) (1 mark each)

1. A (9ME2-1)
2. C (9ME2-2)
3. C (9ME4-2)
4. B
5. B
6. C
7. C
8. A
9. C
10. C
11. B (9ME2-11)
12. B (9ME2-12)
13. B (9ME4-12)
14. A
15. C
16. D
17. D
18. A
19. B
20. D
21. B (9ME2-21)

Section B - Sub-paper 1 (9ME1)

Question Number	Suggested Answers					otes	Marks
22. (i) (9ME2-22)	$\begin{align*} & +4,4 \\ & -5 \tag{ii} \end{align*}$					Must be all correct	1
23. (9ME4-22)	19						1
24. (i) (ii)	Ratio Rate					Must be all correct	1
25.	$4 n$						1
26.	$4 x^{2}+7 x+3$					xpansion	1
27.	$(x-5)(x+3)$					actorization	1
28.							1
29.	$\frac{9}{2}$						1
30.	$x \leq-5$						1
31. (9ME2-31)	1252						1
32. (9ME2-32)	$\angle P R Q, \angle Q R P$						1
33. (9ME4-32)	5						1
34.	$x=8 ; y=7$					Must be all correct	1
35.	$\begin{array}{\|l\|} \hline A H \text { or } B E \text { or } C F \text { or } D G \text { or their } \\ \text { permutations } \\ \hline \end{array}$						1
36.	$\underline{30}$ square units						1

Question Number	Suggested Answers	Notes	Marks
37.	$(-3,-1)$		1
38. (a)	$\underline{7}$ staff members of this accounting firm have age between 35 and 40. (b) $\underline{\underline{3}}$ staff members of this accounting firm have age above 45. There are 23 staff members in this accounting firm.	$1(38 \mathrm{a})$	
39.	The empirical probability of getting "opening sideway" is $\underline{0.8}$.	$1(38 \mathrm{~b})$	

Section C - Sub-paper 1 (9ME1)

Question Number	Suggested Answers	Marks	Notes
40. (9ME2-41)	$\begin{aligned} & 1200 \div 15 \% \\ & =8000 \end{aligned}$ The amount of school grant was $\$ 8000$.	$\begin{gathered} 1(40-1) \\ 1^{*}(40-2) \\ 1^{* *}(40-3) \end{gathered}$	set up
41. (9ME2-42)	$\begin{aligned} & 4000 \times(1+3 \%)^{3} \\ & =4370.908 \\ & \approx 4371 \end{aligned}$ The amount that Ben would receive is $\$ 4371$.	$\begin{gathered} 1(41-1) \\ 1^{*}(41-2) \\ 1^{* *}(41-3) \end{gathered}$	$\begin{aligned} & \text { set up } \\ & \text { r.t. } 4371 \end{aligned}$
42. (9ME4-42)	$\frac{x^{5}}{x^{3} y^{-4}}$ $=\frac{x^{2}}{y^{-4}}$	1 (42-1)	using $\frac{x^{m}}{x^{n}}=x^{m-n}$ or $\frac{x^{m}}{x^{n}}=\frac{1}{x^{n-m}}$ or (when no work is shown) the final answer contains x^{2}
	$=x^{2} y^{-(-4)}$	1 (42-2)	using $\frac{1}{a^{-k}}=a^{k}$ or $a^{-k}=\frac{1}{a^{-(-k)}}$ of (when no work is shown) the numerator of final answer contains y^{4}
	$=x^{2} y^{4}$	1 (42-3)	Correct final answer (getting marks 111)
43.	The area of the sector is $\begin{aligned} & \left(\frac{60^{\circ}}{360^{\circ}}\right) \pi\left(8^{2}\right) \\ & \approx 33.5103 \\ & =33.5 \mathrm{~cm}^{2} \\ & \left(\text { correct to the nearest } 0.1 \mathrm{~cm}^{2}\right) \end{aligned}$	$1(43-1)$ $\begin{gathered} 1^{*}(43-2) \\ 1^{* *}(43-3) \end{gathered}$	set up r.t. 33.5
44. (a) (b)	13 m to 16 m are acceptable In the figure, the building is about 9 cm tall, and the boy is about 1 cm tall. So, the height of the building is about $9 \times 1.6=14.4 \mathrm{~m}$.	$\begin{aligned} & 1(44 a) \\ & 1(44 b) \end{aligned}$	Must have explanation Or other reasonable explanation (such as using the diagram)

9ME1

Question Number	Suggested Answers	Marks	Notes
45. (9ME4-45)	$\begin{aligned} & x+20^{\circ}+x+100^{\circ}=180^{\circ} \\ & \therefore x=30^{\circ} \\ & y=20^{\circ}+x \\ & \therefore y=50^{\circ} \end{aligned}$	$\begin{aligned} & 1^{*}(45-1) \\ & 1^{*}(45-2) \end{aligned}$	
46.	$\begin{aligned} & \because A B=B D=D A \\ & \therefore \angle A B D=60^{\circ} \\ & \therefore x=120^{\circ} \\ & \because B C=B D \\ & \therefore \angle B C D=\angle B D C=y \\ & y+y=60^{\circ} \\ & \therefore y=30^{\circ} \end{aligned}$	$1 *(46-1)$ $1(46-2)$ $1 *(46-3)$	Any correct methods Can be absorbed
47.	$\begin{aligned} \frac{x}{5} & =\tan 47^{\circ} \\ \therefore x & =5 \tan 47^{\circ} \\ & \approx 5.3618 \\ & =5.36 \quad(\text { correct to } 2 \text { decimal places) } \\ \frac{5}{y} & =\cos 47^{\circ} \\ \therefore y & =\frac{5}{\cos 47^{\circ}} \\ & \approx 7.3314 \\ & =7.33 \quad(\text { correct to } 2 \text { decimal places }) \end{aligned}$	$1(47-1)$ $1^{*}(47-2)$ $1(47-3)$ $1 *(47-4)$	Related and correct set up r.t. 5.36 Related and correct set up (Pythagoras Thm may be used) r.t. 7.33
48.	Let the height be $y \mathrm{~m}$, $\begin{aligned} \tan 16^{\circ} & =\frac{y}{570} \\ y & =570 \tan 16^{\circ} \\ & \approx 163.4449 \\ & \approx 163 \end{aligned}$ \therefore The height of the top of power station from the sea level is 163 m (correct to the nearest m).	$\begin{gathered} 1(48-1) \\ \\ \\ 1^{*}(48-2) \\ 1^{* *}(48-3) \end{gathered}$	r.t. 163

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& \multicolumn{2}{|l|}{Suggested Answers} \& Marks \& Notes \\
\hline \multirow[t]{14}{*}{49.} \& \multicolumn{2}{|l|}{Table 1} \& \multirow{14}{*}{\(1(49-1)\)

$1(49-2)$} \& \multirow{14}{*}{Must be all correct
Must be all correct}

\hline \& Weights of school bags (kg) \& Frequency \& \&

\hline \& 0.0-1.9 \& 3 \& \&

\hline \& $2.0-3.9$ \& 4 \& \&

\hline \& $4.0-5.9$ \& 3 \& \&

\hline \& $6.0-7.9$ \& 3 \& \&

\hline \& $8.0-9.9$ \& 4 \& \&

\hline \& 10.0-11.9 \& 3 \& \&

\hline \& \multicolumn{2}{|l|}{Table 2} \& \&

\hline \& Weights of school bags (kg) \& Frequency \& \&

\hline \& 0.0-2.9 \& 7 \& \&

\hline \& 3.0-5.9 \& 3 \& \&

\hline \& $6.0-8.9$ \& 3 \& \&

\hline \& $9.0-11.9$ \& 7 \& \&

\hline
\end{tabular}

Education Bureau
 Territory-wide System Assessment 2009
 Secondary 3 Mathematics
 Marking Scheme

Note (for Section B and C of each sub-paper):
*Mark for Answer:
(1) Mark for Answer may be given when there is a correct answer without any work shown.
(2) If the work shown is incorrect, Mark for Answer is not given.
(3) If the work shown is poorly presented but there is a correct answer, Mark for Answer may be given.
**Mark for Presentation:
(1) If the work shown is correct but the answer is incorrect, Mark for Presentation may be given.
(2) If the work shown is incorrect, Mark for Presentation is not given.
(3) Mark for Presentation may include overall work such as mathematical expressions, units, written explanations, usage of symbol, etc.
r.t. $x x x$ means "accept answers which can be rounded to $x x x$ " .

Steps that may be skipped are shown in shade.

Alternative suggested answers are shown in boxes.

Section A - Sub-paper 2 (9ME2) (1 mark each)

1. A (9ME1-1)
2. C (9ME1-2)
3. C (9ME3-2)
4. D (9ME3-3)
5. D (9ME4-4)
6. A
7. B
8. D
9. C
10. A
11. B (9ME1-11)
12. B (9MEl-12)
13. С (9МЕЗ-12)
14. B (9ME3-13)
15. D (9ME4-15)
16. C
17. D
18. D
19. C
20. D
21. B (9ME1-21)

Section B - Sub-paper 2 (9ME2)

Question Number	Suggested Answers	Notes	Marks
22. (i) (ii) (9ME1-22)	$\begin{aligned} & +4,4 \\ & -5 \end{aligned}$	Must be all correct	1
23. (i) (ii) (9ME3-22)	Exact value Estimated value	Must be all correct	1
24. (9ME3-23)	160		1
25. (9ME4-24)	$\begin{aligned} & b=3 \\ & c=\frac{9}{2} \end{aligned}$	Must be all correct	1
26.	$\frac{5}{3}$	r.t. 1.67	1
27.	$4 x^{3}+4 x^{2}-5 x-3$		1
28.	$(2 x+3)(x-2)$	Factorization	1
29.	$x=3, y=-1$	Must be all correct	1
30.	$x=\frac{10}{w-2}$		1
31. (9ME1-31)	1252		1
32. (9ME1-32)	$\angle P R Q, \angle Q R P$		1
33. (9ME3-32)	$A \cdot C$	Must be all correct	1
34. (a) (b) (9ME3-33)	$\begin{aligned} & 14 \\ & 40 \end{aligned}$		$\begin{aligned} & 1(34 a) \\ & 1 \text { (34b) } \end{aligned}$
35. (a) (b)	$\begin{aligned} & \frac{1}{4} \\ & -5 \end{aligned}$		$\begin{aligned} & 1(35 a) \\ & 1(35 b) \end{aligned}$
36. (9ME4-34)	120		1
37.	$\angle E A D, \angle D A E$		1
38.	(3,210 ${ }^{\circ}$)		1
39.	$\frac{1}{2}$		1
40.	$\underline{6}$ students used more than 70 s to finish the race.		1

Section C - Sub-paper 2 (9ME2)

Question Number	Suggested Answers	Marks	Notes
41. (9ME1-40)	$\begin{aligned} & 1200 \div 15 \% \\ & =8000 \end{aligned}$ The amount of school grant was $\$ 8000$.	$\begin{gathered} 1(41-1) \\ 1^{*}(41-2) \\ 1^{* *}(41-3) \end{gathered}$	set up
42. (9ME1-41)	$\begin{aligned} & 4000 \times(1+3 \%)^{3} \\ & =4370.908 \\ & \approx 4371 \end{aligned}$ The amount that Ben would receive is $\$ 4371$. (correct to the nearest dollars)	$\begin{gathered} 1(42-1) \\ 1^{*}(42-2) \\ 1^{* *}(42-3) \end{gathered}$	set up r.t. 4371
43. (9ME3-43)	x -3 0 3 y -1 0.5 2	$1 \text { (43-1) }$ $1 \text { (43-2) }$	Must be all correct If the table was incorrect, student may still use those values to draw a straight line.

Question Number	Suggested Answers	Marks	Notes
44. (a) (b) (9ME3-44)	$x+y=122$ and $90 x+70 y=10200$	1 (44a)	Must be all correct
	$90(122-y)+70 y=10200$	1 (44b-1)	Method: Getting a linear equation in x or y only from equations in (a)
	Solving to get $y=39$. \therefore There were 39 children on the ferry.	$\begin{gathered} 1^{*}(44 b-2) \\ 1^{* *}(44 b-3) \end{gathered}$	
	$90 x+70(122-x)=10200$	1 (44b-1)	
	$x=83$		
	$83+y=122$		Finding x before finding y
	$y=39$	1*(44b-2)	
	Without (a), (b) can be calculated directly :		
	90(122-y)+70y=10200	1 1 $44 \mathrm{~b}-1)$	Obtaining 122-y and
	Solving to get $y=39$.	1* (44b-2)	$90 x+70 y$
	\therefore There were 39 children on the ferry.		Correct answer Unit/presentation
45. (a) (b) (9ME4-44)	$\pi r^{2}=256 \pi$	1 (45a-1)	Using correct method
	getting $r=16$	$1^{*}(45 \mathrm{a}-2)$	
	Circumference $=2 \pi r$		
	$=2 \pi \times 16$	1 (45b-1)	Using correct method
	$=32 \pi$	1* (45b-2)	
	The circumference of the circle is $32 \pi \mathrm{~cm}$.	1** (45-3)	Parts (a) \& (b)
46.	The total surface area of the pyramid is $\frac{(8)(5)}{2} \times 4+(8)(8)$		
	$=144 \mathrm{~cm}^{2}$	1* (46-2)	

Education Bureau
 Territory-wide System Assessment 2009
 Secondary 3 Mathematics
 Marking Scheme

Note (for Section B and C of each sub-paper):
*Mark for Answer:
(1) Mark for Answer may be given when there is a correct answer without any work shown.
(2) If the work shown is incorrect, Mark for Answer is not given.
(3) If the work shown is poorly presented but there is a correct answer, Mark for Answer may be given.
**Mark for Presentation:
(1) If the work shown is correct but the answer is incorrect, Mark for Presentation may be given.
(2) If the work shown is incorrect, Mark for Presentation is not given.
(3) Mark for Presentation may include overall work such as mathematical expressions, units, written explanations, usage of symbol, etc.
r.t. $x x x$ means "accept answers which can be rounded to $x x x$ " .

Steps that may be skipped are shown in shade.

Alternative suggested answers are shown in boxes.

Section A - Sub-paper 3 (9ME3) (1 mark each)

1. A
2. C (9ME2-3)
3. D (9ME2-4)
4. B
5. C (9ME4-5)
6. D
7. C
8. B
9. D
10. C
11. D
12. C (9ME2-13)
13. B (9ME2-14)
14. B
15. D (9ME4-16)
16. B
17. A
18. B
19. C (9ME4-18)
20. A

Section B - Sub-paper 3 (9ME3)

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	$\begin{array}{l}\text { Suggested Answers }\end{array}$	Notes	Marks
21.	$\begin{array}{l}A=-5 \\ B=-1 \\ C=2\end{array}$	Must be all correct	
$C=+2$			

Section C - Sub-paper 3 (9ME3)

Question Number	Suggested Answers	Marks	Notes
40.	(Student needs to estimate the sailing distances in 5 days.) Each day from Monday to Friday he sails for $\begin{aligned} & 4.9+12.85+9.9 \\ & \approx 5+13+10 \\ & =28 \mathrm{~km} \end{aligned}$ \therefore The total sailing distance per week is $28 \times 5=140 \mathrm{~km} .$	0 (40-1) 0 (40-2) No evidence of using any estimation strategies	eg. - Give estimate only after exact calculation - Exact calculation only
		1 (40-1) 0 (40-2) Partial evidence of using estimation strategies, but the solution is incomplete or has errors	eg. - Estimated the sailing distance for one day only - Gave a reasonable estimate without explanation - Minor error occurred in estimation but otherwise correct
		1 (40-1) 1 (40-2) Estimated reasonably with appropriate reason	- Need not consider units / presentation
41.	$\begin{aligned} & 360 \div 3 \div 2 \% \\ & =6000 \end{aligned}$ The principal was $\$ 6000$.	$\begin{gathered} 1(41-1) \\ 1 *(41-2) \\ 1^{* *}(41-3) \end{gathered}$	set up
42.	$\begin{aligned} & 6500 \times(1-40 \%)^{3} \\ & =1404 \end{aligned}$ The value of the computer after three years is $\$ 1404$. or	$\begin{gathered} 1(42-1) \\ 1 *(42-2) \end{gathered}$ $1^{* *}(42-3)$	set up
	$\begin{array}{\|l\|} \hline 6500 \times 0.6=3900 \\ \hline 3900 \times 0.6=2340 \\ \hline 2340 \times 0.6=1404 \\ \hline \end{array}$ The value of the computer after three years is \$1404.	$\begin{aligned} & 1(42-1) \\ & 1^{*}(42-2) \\ & 1^{* *}(42-3) \end{aligned}$	correct method (multiply 0.6 three times)

Question Number	Suggested Answers	Marks	Notes
45.	The length of $\operatorname{arc} \overparen{A C B}$ is $\begin{aligned} & \left(\frac{100^{\circ}}{360^{\circ}}\right) \pi(2)(3) \\ & \approx 5.23599 \\ & =5.2 \mathrm{~cm} \end{aligned}$ (correct to the nearest 0.1 cm)	$\begin{gathered} 1(45-1) \\ \\ 1^{*}(45-2) \\ 1^{* *}(45-3) \\ \hline \end{gathered}$	r.t. 5.2
46.	The surface area of the Fit ball is $\begin{aligned} & (4 \pi)\left(\frac{50}{2}\right)^{2} \\ & \approx 7853.9816 \\ & =7854 \mathrm{~cm}^{2} \end{aligned}$ (correct to the nearest cm^{2})	$\begin{gathered} 1(46-1) \\ \\ 1^{*}(46-2) \\ 1^{* *}(46-3) \end{gathered}$	Set up r.t. 7854
47.	$\begin{aligned} & x=180^{\circ}-110^{\circ} \\ & \therefore x=70^{\circ} \\ & x+90^{\circ}+y=180^{\circ} \\ & \therefore y=20^{\circ} \\ & z=y \\ & \therefore z=20^{\circ} \end{aligned}$	$\begin{aligned} & 1^{*}(47-1) \\ & 1^{*}(47-2) \\ & 1^{*}(47-3) \end{aligned}$	
48.	$\begin{aligned} & \frac{A B}{R P}=\frac{5}{7.5}=\frac{2}{3} \\ & \frac{B C}{P Q}=\frac{4}{6}=\frac{2}{3} \\ & \frac{C A}{Q R}=\frac{6}{9}=\frac{2}{3} \\ & \because \frac{A B}{R P}=\frac{B C}{P Q}=\frac{C A}{Q R}=\frac{2}{3} \\ & \therefore \triangle A B C \sim \triangle R P Q \end{aligned}$ 3 sides proportional	$\begin{aligned} & 1(48-1) \\ & 1(48-2) \\ & 1(48-3) \end{aligned}$	Write out one of the ratios Matching corresponding line segments Proof is completely correct
49. (9ME4-48)	The statement of Thomas is misleading. It is because the arithmetic mean of his score was affected by extreme values of the $4^{\text {th }}$ and $9^{\text {th }}$ matches. It is because the score was below 5 in 8 of the matches.	$\begin{aligned} & \hline 1(49-1) \\ & 1(49-2) \\ & 1(49-2) \end{aligned}$	Attempt to explain Explanation Explanation

Education Bureau
 Territory-wide System Assessment 2009
 Secondary 3 Mathematics
 Marking Scheme

Note (for Section B and C of each sub-paper):
*Mark for Answer:
(1) Mark for Answer may be given when there is a correct answer without any work shown.
(2) If the work shown is incorrect, Mark for Answer is not given.
(3) If the work shown is poorly presented but there is a correct answer, Mark for Answer may be given.
**Mark for Presentation:
(1) If the work shown is correct but the answer is incorrect, Mark for Presentation may be given.
(2) If the work shown is incorrect, Mark for Presentation is not given.
(3) Mark for Presentation may include overall work such as mathematical expressions, units, written explanations, usage of symbol, etc.
r.t. $x x x$ means "accept answers which can be rounded to $x x x$ " .

Steps that may be skipped are shown in shade.

Alternative suggested answers are shown in boxes.

Section A - Sub-paper 4 (9ME4) (1 mark each)

1. A
2. C (9ME1-3)
3. B
4. D (9ME2-5)
5. C (9ME3-5)
6. D
7. A
8. C
9. B
10. D
11. B
12. B (9MEl-13)
13. B
14. C
15. D (9ME2-15)
16. D (9МЕЗ-15)
17. B
18. С (9ME3-19)
19. B
20. C

Section B - Sub-paper 4 (9ME4)

Question Number	Suggested Answers	Notes	Marks
$\begin{array}{r} \text { 21. (a) } \\ \text { (b) } \end{array}$	$\begin{array}{\|l\|} \hline 6 \\ -5 \\ \hline \end{array}$		$\begin{aligned} & 1 \text { (21-a) } \\ & 1 \text { (21-b) } \end{aligned}$
22. (9ME1-23)	19		1
23.	2.4×10^{4}	Scientific notation	1
24. (9ME2-25)	$\begin{aligned} & b=3 \\ & c=\frac{9}{2} \end{aligned}$	Must be all correct	1
25. (9ME3-24)	$\begin{aligned} & x=21 \\ & y=34 \end{aligned}$	Must be all correct	1
26.	$3 x^{3}-2 x^{2}+x$	Expansion	1
27.	$\begin{aligned} & (2 x+3)^{2} \\ & (2 x+3)(2 x+3) \end{aligned}$	Factorization	1
28.	5		1
29.	$x^{2}-9$	Expansion	1
30.	$x>-3$		1
31.		Any correct triangular prisms	1
32. (9ME1-33)	5		1
33.	70		1
34. (9ME2-36)	120		1
35.	$P Q W T$ or its permutation, or $S R V U$ or its permutation, or $P S W V$ or its permutation, or $Q R T U$ or its permutation, or $S T V Q$ or its permutation, or $P U W R$ or its permutation.		1
36.	$A, ~ C$	Must be all correct	1
37.	50°		1
38.	$22.6{ }^{\circ}$	Reference value 22.61986° $\text { r.t. } 22.6^{\circ}$	1
39.	The weighted mean of unit prices of stocks is $\$ \underline{\underline{6}}$.		1

Section C - Sub-paper 4 (9ME4)

Question Number	Suggested Answers	Marks	Notes
40.	$\begin{aligned} & 110 \times(1-5 \%) \\ & =104.5 \\ & \text { Tim paid } \$ 104.5 \text {. } \end{aligned}$	$\begin{gathered} 1(40-1) \\ 1^{*}(40-2) \\ 1^{* *}(40-3) \end{gathered}$	set up
41.	$\begin{aligned} & 2000 \times 0.063 \times 90 \\ & =11340 \end{aligned}$ The weight of one stack of A4 paper is 11340 g .	$\begin{gathered} 1(41-1) \\ 1^{*}(41-2) \\ 1^{* *}(41-3) \end{gathered}$	set up
42. (9ME1-42)	$\frac{x^{5}}{x^{3} y^{-4}}$$\begin{equation*} =\frac{x^{2}}{y^{-4}} \tag{42-1} \end{equation*}$		using $\frac{x^{m}}{x^{n}}=x^{m-n}$ or $\frac{x^{m}}{x^{n}}=\frac{1}{x^{n-m}}$ or (when no work is shown) the final answer contains x^{2}
	$=x^{2} y^{-(-4)}$	1 (42-2)	using $\frac{1}{a^{-k}}=a^{k}$ or $a^{-k}=\frac{1}{a^{-(-k)}}$ of (when no work is shown) the numerator of final answer contains y^{4}
	$=x^{2} y^{4}$	1 (42-3)	Correct final answer (getting marks 1 11)
43.	$\left\{\begin{array}{l} 2 x-y=78 \\ 4 x+y=114 \end{array}\right.$ (1) $+(2)$: $6 x=192$ $x=32$ Substitute $x=32$ into (2) $4(32)+y=114$ $y=-14$	$\begin{gathered} 1(43-1) \\ 1 *(43-2) \\ 1(43-3) \\ 1 *(43-4) \end{gathered}$	Method (eliminating one of the variables) First correct root (either x or y) Method (using the value of the first root to get the second root) Both roots are the correct answers

題號	答案	分額	註
44．（a） （b） （9ME2－45）	$\begin{aligned} & \pi r^{2}=256 \pi \\ & \text { getting } r=16 \\ & \text { Circumference }=2 \pi r \\ & \quad=2 \pi \times 16 \\ & \quad=32 \pi \end{aligned}$ The circumference of the circle is $32 \pi \mathrm{~cm}$ ．	$\begin{gathered} 1(44 a-1) \\ 1^{*}(44 a-2) \\ 1(44 b-1) \\ 1^{*}(44 b-2) \\ 1^{* *}(44-3) \end{gathered}$	Using correct method Using correct method Parts（a）\＆（b）
$45 .$ （9ME1－45）	$\begin{aligned} & x+20^{\circ}+x+100^{\circ}=180^{\circ} \\ & \therefore x=30^{\circ} \\ & y=20^{\circ}+x \\ & \therefore y=50^{\circ} \end{aligned}$	$\begin{aligned} & 1^{*}(45-1) \\ & 1^{*}(45-2) \end{aligned}$	
46.	$\angle C B A=\angle C D E$ Given $B C=D C$ Given $\angle B C A=\angle D C E$ Vert Opp $\angle \mathrm{A}$ $\therefore \triangle A B C \cong \triangle E D C$ ASA	1 （46－1）	The two＂Given＂parts
		1 （46－2）	Correct reason needed
		1 （46－3）	The proof is completely correct
47.	Let θ be the angle， $\begin{aligned} & \tan \theta=\frac{55.86}{3.9} \\ & \therefore \theta=86^{\circ} \end{aligned}$ \therefore The angle between the tower and the horizontal is 86° ．	$\begin{gathered} 1(47-1) \\ \\ 1^{*}(47-2) \\ 1^{* *}(47-3) \end{gathered}$	r．t． 86°
$\begin{array}{\|l\|} \hline 48 . \\ \text { (9ME3-49) } \end{array}$	The statement of Thomas is misleading． It is because the arithmetic mean of his score was affected by extreme values of the $4^{\text {th }}$ and $9^{\text {th }}$ matches． It is because the score was below 5 in 8 of the matches．	$\begin{aligned} & 1(48-1) \\ & 1(48-2) \\ & 1(48-2) \end{aligned}$	Attempt to explain Explanation Explanation

